
Cryptography

5 – Public-key encryption II: Discrete logarithms

G. Chênevert

October 21, 2019

mailto:gabriel.chenevert@yncrea.fr

Today

Modular DLP

Applications

Cryptanalysis

Modular exponentiation

For a given modulus n:

(g , ξ) 7→ x ≡
n
g ξ

RSA: hard to recover g from x even if ξ is known

(essentially need to factor n)

”discrete ξth root problem”

Discrete logarithm problem

Also hard to recover ξ from x even if g is known!

Definition (Discrete logarithm)

logg x :≡
ν
ξ ⇐⇒ x ≡

n
g ξ,

where ν is the multiplicative order of g , i.e. the smallest positive integer for which

gν ≡
n

1.

By Fermat’s theorem, we know in general that ν |ϕ(n).

General fact

Logarithms never behave quite as well as exponentials.

(think: speed of convergence of power series, ...)

Meaning here: discrete logs can take much longer to compute than modular

exponentials.

Information can be hidden in exponents!

Example: x ≡
2039

1769ξ

Today

Modular DLP

Applications

Cryptanalysis

Secret sharing

Public-key encryption provides a partial solution to the problem of setting up a shared

private key for symmetric encryption on an insecure channel:

• Alice chooses secret k,

• encrypts it with Bob’s public encryption key,

• and sends it to him;

• Bob recovers k using his private decryption key.

Are there problems with that? (hint: yes)

”Symmetric” version

• Alice chooses kA and sends it to Bob using his public encryption key;

• Bob chooses kB and sends it to Alice using her public encryption key;

• Shared secret is k := kA ⊕ kB .

Better: neither Alice nor Bob fully controls the final secret.

But two public encryption key pairs are needed. . .

Diffie-Hellman (1976)

• Alice and Bob agree on ”safe” parameters n and g .

• Alice chooses α, computes a ≡
n
gα and sends it to Bob.

• Bob chooses β, computes b ≡
n
gβ and sends it to Alice.

Shared secret is

k :≡
n
gαβ ≡ aβ ≡ bα.

Diffie-Hellman problem

Eve is faced with the problem:

given a and b, recover k.

We believe that her best line of attack is:

• compute α = logg a or β = logg b

• then easily deduce k ≡
n
gαβ.

Caveats

• Should always be used in conjunction with authentication to prevent

man-in-the-middle attacks

• Bob should check that Alice does not provide a value of a for which the discrete

log is easy

(same on Alice’s side)

Example: x ≡
1856

1514ξ

ElGamal cipher (1985)

Essentially Diffie-Hellman + one-time multiplicative pad

Public parameters: n and g (can be reused)

Keys:

• δ private decryption key

• e ≡
n
g δ public encryption key

Alice wants to send a message m ∈ [[0, n[[to Bob.

Encryption

• Alice chooses random σ, computes s ≡
n
gσ

• Computes shared secret k ≡
n
eσ

• Computes encrypted c ≡
n
k ·m

• Sends the pair (s, c)

Decryption

Upon reception of a pair (s, c), Bob

• Computes shared secret k ≡
n
sδ

• Recovers m ≡
n
k−1 · c

Same caveats apply!

Today

Modular DLP

Applications

Cryptanalysis

Attacks on the DLP

or: how to compute discrete logarithms

To understand how to choose ”safe” parameters n and g we need to understand how

to force the DLP algorithms to be in the worst-case scenario.

Naive algorithm: brute-force the exponent

Takes at most O(ν) ≤ O(n) steps

=⇒ want g of large multiplicative order ν (hence large n)

Chinese remainder theorem

If n = n1 · n2 with n1 and n2 coprime:

x ≡
n
g ξ ⇐⇒

x ≡

n1
g ξ

x ≡
n2

g ξ

If ξ is recovered modulo ν1 and ν2, it is then easily recovered modulo ν = LCM(ν1, ν2)

=⇒ n should be as prime as possible

Here, this means: n should be prime

CRT (again)

Hence take n a prime, so that ϕ(n) = n − 1.

Remember we are looking for a value ξ mod ν |ϕ(n).

If ϕ(n) = n − 1 factors, we can speed up the process by working modulo the factors.

=⇒ n − 1 should be as prime as possible

Here, the best we can do is: n = 2q + 1 with q prime

(n: safe prime, q: associated Sophie Germain prime)

Sophie Germain (1776-1831)

Primitive roots

Fact: For n prime, there exists in (Z/nZ)× an element of order n − 1.

Hence, for a safe prime:

(Z/nZ)× ' Z/(n − 1)Z CRT' Z/2Z× Z/qZ

Most nonzero elements g have multiplicative order q or 2q.

Only two of them generate small subgroups:

1 ' (0, 0) and − 1 ' (1, 0).

Baby-step giant-step

Time/memory trade-off on the naive algorithm to compute ξ ≡
ν

logg x .

Pick some base β and write ξ = iβ + j .

Baby step:

Compute and store all powers g j mod n for j ∈ [[0, β[[in a table

Giant step:

For every i ∈ [[0, νβ [[, check if x · (g−β)i mod n is in the above table

Baby-step giant-step

Time complexity: O(β) +O(ν
β)

Space complexity: O(β)

Often take β ≈
√
ν to get time and space complexities

O(
√
ν).

Other algorithms

There also exists a general-purpose probabilistic algorithm that takes (on average)

O(
√
ν) steps (and O(1) memory)

The General Number Field Sieve solves the modular DLP

=⇒ use same key lengths as for RSA

http://en.wikipedia.org/wiki/Pollard's_rho_algorithm_for_logarithms

Recall

Generalized DLP

The nice thing about the DLP is that it can be asked in any abelian group G:

Given g ∈ G and x such that

x = g ξ = g · g · · · g︸ ︷︷ ︸
ξ

in G,

find ξ ≡
ν

logg (x), with ν = ordG(g).

So far we used G = (Z/nZ)×, but there are other interesting groups...

Elliptic curves

Best known DLP algorithms are the generic ones

=⇒ `-bit security achieved by 2`-bit keys ,

	Modular DLP
	Applications
	Cryptanalysis

